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Abstract

Depression is one of the most prominent mental disorders, with
an increasing rate that makes it the fourth cause of disability
worldwide. The field of automated depression assessment has
emerged to aid clinicians in the form of a decision support sys-
tem. Such a system could assist as a pre-screening tool, or
even for monitoring high risk populations. Related work most
commonly involves multimodal approaches, typically combin-
ing audio and visual signals to identify depression presence
and/or severity. The current study explores categorical assess-
ment of depression using audio features alone. Specifically,
since depression-related vocal characteristics impact the glot-
tal source signal, we examine Phase Distortion Deviation which
has previously been applied to the recognition of voice qualities
such as hoarseness, breathiness and creakiness, some of which
are thought to be features of depressed speech. The proposed
method uses as features DCT-coefficients of the Phase Distor-
tion Deviation for each frequency band. An automated machine
learning tool, Just Add Data, is used to classify speech samples.
The method is evaluated on a benchmark dataset (AVEC2014),
in two conditions: read-speech and spontaneous-speech. Our
findings indicate that Phase Distortion Deviation is a promising
audio-only feature for automated detection and assessment of
depressed speech.

Index Terms: glottal source, Phase Distortion Deviation, bi-
nary classification, machine learning

1. Introduction

Depression is a mood disorder with a great societal cost [1],
predicted to become the second most significant cause of dis-
ability worldwide by 2020 [2]. Early detection of the disorder
is paramount. In a clinical setting, it is important to quantify de-
pression in order to be able to track the progress of a depressed
individual in a non-intrusive manner [3]. Speech-based assess-
ment is one promising approach for the non-intrusive detection
of depression [4]. The current paper describes an approach to
automatic detection of depressed speech.

Depressed individuals are characterized by psychomotor re-
tardation, manifested as a slowing of coordination, speech, and
impaired articulation, leading to changes in the glottal source,
vocal tract and prosodic features. Perceived depressed voice
characteristics include monotony, hoarseness, breathiness and
reduced speech rate. Here, we focus on the speech character-
istics related to the glottal source signal for discriminating de-
pressed from normal speech. Specifically, we use fundamental
frequency (fo) features in addition to measures based on the
phase distortion [5] of the glottal source signal which charac-
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terizes glottal impulse variations. A major advantage of phase
distortion is that it allows glottal source characteristics to be es-
timated from the speech signal without the need to estimate the
glottal source signal itself. The statistic used in this study is the
standard deviation of the phase distortion (PDD) that charac-
terizes the shape of periodic pulses of the glottal source. PDD
is associated with voice quality and has been used successfully
as a quality assessment metric [6, 7, 8]; in [6] PDD was em-
ployed as an objective measure for quantifying spasmodic dys-
phonia, while in [8] the PDD spectrogram was introduced to
distinguish highly intelligible speech (Lombard speech) from
normal speech. Motivated by the correlation of PDD with the
glottal source characteristics and its ability to quantify the de-
gree of change of the glottal pulses, we propose PDD as a new
metric for the detection and quantification of depressed speech.
Using an existing labelled corpus of depressed and nor-
mal speech in both read and spontaneous speaking styles (Sec-
tion 3.3), we examine whether simple statistical properties of
the fo and PDD feature distributions are able to separate de-
pressed/normal speech (Section 4), and go on to employ a
classification-based approach using a richer PDD feature set
(Section 5). Classification between depressed and normal
speech using the PDD and fj extracted features was performed
with the fully-automated machine learning pipeline ‘Just Add
Data’ [9] which produces a classification model given a training
dataset and derives an estimate of its predictive performance.

2. Related Work

Research in depression detection has focused on two major do-
mains for feature extraction, image and speech, employed indi-
vidually or combined. Here we review previous studies using
speech only. The third Audio/Visual Emotion Challenge [10]
(AVEC-2013) incorporated a depression sub-challenge, aimed
at predicting scores on Beck’s Depression Inventory-II (BDI-
II), leading to a regression problem for the continuous assess-
ment of depression. The dataset consists of audio/visual record-
ings of volunteer participants, recorded while carrying out sev-
eral powerpoint-guided tasks. The winning entry for the sub-
challenge [11] exploited changes in correlations across formant
frequencies and channels of the delta-mel-cepstrum using a
Gaussian mixture model (GMM). Subsequent approaches using
AVEC-2013 include Cummins et al. [12], who employed acous-
tic volume analysis combined with GMMs, Scherer et al. [13],
who explore reduced vowel space as an indicator of distress, and
the iVector-based approach of Lopez-Ottero et al. [14] applied
to four depression severity classes.

The fourth Audio/Visual Emotion Challenge [15] (AVEC-
2014) also featured a depression sub-challenge for both read
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and spontaneous speech styles. Approaches using AVEC-2014
include that of Mitra and Shriberg [16], who employed spectral,
articulatory, phonetic, and prosodic features. The binary classi-
fication method of Statak et al. [17] assigned BDI-II scores of
[0-9] to ‘none-low depression’ and [19-63] to ‘moderate-high
depression’, and used Geneva Minimalistic Acoustic Parame-
ter Set features [18] for estimation of arousal level, achieving
a classification accuracy of 82.5%. Pampouchidou et al. [19]
proposed binary categorical assessment, by considering BDI-II
scores [0-13] as not-depressed, and [14-63] as depressed. Us-
ing the covarep toolbox [20] for extracting speech-based DCT
features, they achieved an F1-score of 0.64 for gender-based
depression classification.

3. Methods

The proposed method for assessing depression involves extrac-
tion of the phase distortion deviation, feature compression, and
automated classification.

3.1. Phase distortion deviation

Two of the perceived voice qualities that might be expected to
characterize depressed speech are hoarseness and breathiness.
Such voice qualities are largely associated with voice produc-
tion and the characteristics of the glottal source [21]. Recently,
it has been shown that the characteristics of the glottal source
can be estimated from the phase component of the speech signal
introducing a novel feature highly correlated with voice qual-
ity. This feature is the phase distortion described in [7]. That
study suggests that PDD could capture the characteristics of de-
pressed speech, a hypothesis we test in the current study.

To estimate the PDD, speech is first decomposed into time-
varying harmonic components, that is the time varying ampli-
tudes, frequencies and phases. The adaptive Harmonic model
described in [22] is used to extract the instantaneous phases
from the speech signal. Then, in order to measure only the
phase distortion corresponding to the glottal source signal, the
minimum phase component related to the influence of the vocal
tract is removed from the instantaneous phase. Finally, PDD is
estimated using the method of [23] for the computation of stan-
dard deviation for circular data, as described in [20, 6]. Phase
distortion is estimated at a frame rate of 10 ms, and the PDD is
computed in a window of 3 periods, enabling it to track varia-
tions in the ongoing speech signal.

Figure 1 illustrates the PDD metric for samples of both nor-
mal and depressed speech, uttered by a healthy female speaker
and a depressed female speaker respectively. It is evident that
the normal speech has lower PDD values than those of the de-
pressed speech, at least for frequencies in the range 0-5 kHz.
This difference is most likely to be due to a reduced or ab-
sent harmonic structure during voiced segments of depressed
speech, linked to the presence of hoarseness and breathiness.
This observation supports our assumption that a depressed in-
dividual’s voice shares certain features of hoarse and breathy
voice. In hoarse voice, escaping air produces irregular vibra-
tions of the vocal cords, while in breathy voice the aperiodic
component is generated by air passing through the glottis. PDD
may describe the resulting noisiness with a glottal locus.

We further observe that PDD differences between de-
pressed and normal speech appear mainly during the voiced
segments. Therefore, solely voiced areas are used in the cur-
rent analysis. Voicing and fo are estimated using a robust
voicing detection method, Summation of Residual Harmonics
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Figure 1: Spectro-temporal plots of phase distortion deviation
for normal and depressed speech. Regions of low distortion are
mapped to darker shades of grey. Regions of voiced speech are
indicated on the speech waveforms.

[24], which uses the harmonic information of the residual sig-
nal for their estimation. Here fo values are limited to the range
70 — 500 Hz.

3.2. Feature compression

The PDD is defined in the interval [0, 4+-00) and for each time
instant (here, 10 ms) there are 512 frequency bins up to the
Nyquist frequency (8 kHz); see Figure 1. In order to use the
extracted PDD feature in a automated classification system to
detect the presence or absence of depression, feature dimen-
sionality has to be reduced. First, each PDD spectral slice is
reduced to 12 Mel-Cepstral coefficients [25]. Second, we apply
a discrete cosine transform along the time dimension to each
Mel-Cepstral-transformed frequency feature, truncating at 20
coefficients. As a result, each speech sample is represented by
a fixed-size parameter vector.

3.3. Datasets

The proposed method was evaluated on the Northwind (read
speech) and Freeform (spontaneous speech) tasks of AVEC-
2014. For the challenge, the dataset was organized in three
partitions of 100 recordings each (training, development, test-
ing) for both tasks. Labels of the testing partition were with-
held for challenge purposes, so in the present study only the 200
recordings from the development and train sets were used. The
dataset was annotated with a single label per recording, corre-
sponding to speakers’ scores on BDI-II, which according to its
standardized cutoffs can be interpreted as minimal depression
for a score of [0-13], mild [14-19], moderate [20-28], or severe
[29-63]. The current binary classification approach uses two
near-balanced subsets of not-depressed (BDI=[0-13], n=104),
and depressed (BDI=[14-63], n=96) speech samples. Three of
the Freeform recordings were excluded due to lack of a speech
signal; all recordings were downsampled to 16 kHz.
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Figure 2: Standard deviation of fo as a function of speaker gen-
der, task and depression status. Data are presented as boxplots,
with outliers indicated by diamonds.

4. Analysis of PDD and f;-based measures

To explore the discriminatory power of the proposed features
in identifying depressed speech as a function of task, gender
and frequency region, analyses of variance were performed on
PDD and f, features. All speech material from each speaker
was combined in order to estimate the PDD and f, measures.
Ten subjects were excluded from the analysis due to either (i)
possessing speech samples variously labelled as both depressed
and normal, or (ii) where visual inspection of fo histograms
suggested a failure of robust estimation (typically ‘pitch’ halv-
ing or doubling errors).

In all, 7 measures were analysed: mean, standard deviation,
minimum and maximum of fo, and mean, median and standard
deviation of PDD. In the case of the fo features a robust esti-
mation process was used to exclude outliers (defined as values
lying outside 1.5 times the inter-quartile range). For the PDD
measures, information was combined into 3 frequency bands,
spaced quasi-logarithmically: low (0-750 Hz), midrange (750-
2500 Hz) and high (2500-8000 Hz).

Mixed-effects analyses of variance with a between-subjects
factor of depression status (D=depressed, ND=not depressed)
and a within-subject factor of Task (Northwind, Freeform) for
fo- and PDD-based measures were carried out separately for
male and female speakers. For the PDD measures an additional
within-subject factor of frequency band was examined. The
only statistically-significant outcomes involving the depression
status factor are depicted in Figures 2 and 3.
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Figure 3: Median PDD as a function of task, frequency band
and depression status for female speakers.

Of the fo-based measures, the standard deviation of fo
showed an influence related to depression status, but only for
female talkers in the Northwind read speech task (Figure 2)
[F(1,29) = 5.56, p < .05, n® = 0.10], although a similar
tendency is apparent for the Freeform task. For the PDD-based
measures, only the median and mean showed a statistically-
significant difference dependent on depression status, and again
only for the female talkers [F'(1,29) = 4.85, p < .05,
n? = 0.07]. Differences were limited to the mid and high fre-
quency bands (Figure 3) and were apparent in both tasks.

5. Automated classification

The performance of the proposed features in detecting de-
pressed speech was tested using the Just Add Data (JAD) clas-
sification tool, v0.57 [9]. JAD performs multiple feature se-
lection, training of different classification models and tuning
of their hyper-parameters. Then, it automatically selects the
best model and generates unbiased estimates of the mean per-
formance and 95% confidence interval, using stratified K-fold
cross-validation. Since the model was produced with the best
configuration, its cross-validated performance is optimistic (bi-
ased) [26]. JAD removes the bias using a bootstrap method be-
fore returning the final performance estimate [27]. Note that
the final performance estimates are slightly conservative. JAD
was used without performing feature selection to maximize pre-
dictive performance. The tool trains several basic and advanced
multivariate machine learning and statistical classification mod-
els: for classification problems, it uses Support Vector Machine



Table 1: Classifier performance (AUC) for each dataset for three sets of features/combinations. Comp. PDD indicates compressed
PDD features; PDD stats comprises mean, median and standard deviation of PDD; fy stats consists of mean, standard deviation,
min and max fo. The best male and female feature set results are highlighted in bold. 95% Confidence Intervals are provided in

parentheses.

Dataset

comp.
PDD

comp. PDD
+ fo stats

PDD stats &
+ fo stats

Northwind
male only
female only

0.68(0.53,0.82)
0.77(0.57,0.90)
0.75(0.57, 0.85)

0.67(0.52, 0.80)
0.76(0.54, 0.89)
0.75(0.59, 0.85)

0.75(0.60, 0.86)
0.78(0.62, 0.90)
0.76(0.60, 0.90)

Freeform
male only
female only

0.71(0.57,0.84)
0.72(0.48, 0.88)
0.74(0.48,0.84)

0.71(0.57, 0.83)
0.72(0.48, 0.87)
0.74(0.50, 0.84)

0.63(0.44,0.73)
0.75(0.51,0.90)
0.76(0.52, 0.85)

Both datasets
male only
female only

0.67(0.57,0.73)
0.87(0.77,0.94)
0.79(0.75,0.84)

0.66(0.56,0.72)
0.87(0.77,0.94)
0.79(0.75,0.84)

0.66(0.56,0.73)
0.88(0.78,0.95)
0.76(0.67,0.83)

models (SVMs) [28] with linear, full polynomial and Gaussian
kernels, Ridge Logistic Regression [29] models, and Random
Forests [30] models. Given that AVEC 2014 includes more than
one recordings per participant, we have to avoid the bias intro-
duced if the same participant belongs to more than one fold. For
that, the JAD was used with the aforementioned constraint.

Three different sets of data were analyzed using JAD: (i) the
7 PDD/ fo measures described in section 4; (ii) the compressed
PDD features (12 MCEP coefficients x 20 DCT coefficients)
described in section 3.2; and (iii) a combination of the com-
pressed PDD features and the 4 f features (mean, s.d., min and
max). For each set, we performed three analyses based on us-
ing the entire set and the gender as a feature, or for each gender
separately.

Table 1 summarises the classifier performance in terms
of the area under the receiver operating characteristic curve
(AUC). Not surprisingly given the source-derived nature of the
features, gender-specific training results in the best classifica-
tion performance for each dataset/feature set combination. Of
the three feature sets, compressed PDD features show a slight
advantage over PDD statistics. The addition of fj statistics to
the compressed PDD features is not beneficial in any condition.

Given that in most cases the confidence intervals do not
contain the point AUC=0.5, we infer that AUC is statistically
significantly different than 0.5 (random classifier). Further-
more, in the best performing training results, the confidence
intervals are higher than AUC=0.75.

6. Discussion

The current study demonstrates that features derived from the
glottal source are valuable for the automated detection of de-
pression in both read and spontaneous speech. While direct
comparison with previous work is precluded by differences in
experimental setups, our proposed system based solely on com-
pressed PDD features appears that comparable to earlier studies.
PDD-based features represent a small subset of potential audio-
domain features; incorporation of complementary features such
as those associated with speech rate or rhythm can be expected
to lead to gains in classification performance.

The best outcomes are seen for gender-specific training. We
speculate that given a more extensive corpus it may be possible
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to learn gender-conditioning at the classifier level. On the other
hand, the analyses of individual features highlighted gender dif-
ferences, at least for these datasets. Depressed speech from
female speakers exhibited a significantly compressed speech
range compared to normal speech, but no such effect was seen
for male speakers.

The key measure tested in the current study, the standard
deviation of phase distortion, shows a frequency-dependent pat-
tern that distinguishes depressed and non-depressed speech.
While informal observations (e.g., of Figure 1) suggest that
these differences are present in the range 0-5 kHz, our statis-
tical analysis suggests that it is in the mid- and high-frequency
regions where the largest differences are apparent. It is possi-
ble that the lack of harmonic clarity that is hypothesised to be a
feature of hoarse, breathy and depressed speech, is mainly dis-
ruptive in the region above F1 where harmonic amplitudes are
relatively low.

7. Conclusions

We present a method to identify speech samples labelled as de-
pressed based on glottal source parameters. Specifically, a time-
frequency representation of the standard deviation of phase dis-
tortion, compressed to a fixed-size parameter vector by com-
pression in both time and frequency, leads to a classification per-
formance of 79 and 87% for female and male speakers respec-
tively for read and spontaneous speech tasks of the AVEC-2014
challenge benchmark datasets. Potential developments of the
proposed method include the inclusion of complementary fea-
tures both within the audio domain and from the visual modality
cf. [31, 19].
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